

CAN 300 PRO Application Example DeviceNet Slave

CAN Communication Module for S7-300 Application Example for DeviceNet Slave Handling Blocks

Manual

Edition 1 / 11.03.2010

All rights are reserved, including those of translation, reprinting, and reproduction of this manual, or parts thereof. No part of this manual may be reproduced, processed, copied, or transmitted in any way whatsoever (photocopy, microfilm, or other method) without the express written permission of Systeme Helmholz GmbH, not even for use as training material, or using electronic systems. All rights reserved in the case of a patent grant or registration of a utility model or design.

Copyright © 2010 by

Systeme Helmholz GmbH

Hannberger Weg 2, 91091 Grossenseebach, Germany

Note:

We have checked the content of this manual for conformity with the hardware and software described. Nevertheless, because deviations cannot be ruled out, we cannot accept any liability for complete conformity. The information in this manual is regularly updated. When using purchased products, please heed the latest version of the manual, which can be viewed in the Internet at <u>www.helmholz.de</u>, from where it can also be downloaded.

Our customers are important to us. We are always glad to receive suggestions for improvement and ideas.

S7-300, Step and SIMATIC are registered trademarks of SIEMENS.

Revision history of this document:

Edition	Date	Revision
1	11.03.2010	1 st version

Contents

1	Overview	6
1.1	Application and function description	6
1.1.1	Get Attribute	6
1.1.2	Set Attribute	6
1.1.3	Approval	7
1.2	PLC configuration	8
2	Configuring the CAN Module	9
3	Programming in the PLC	10
3.1	Overview	10
3.2	FB 99 "DN Adapter"	10
3.3	Example OB 100	12
3.4	Example OB 1	13
3.5	Return parameter RETVAL	14
4	Diagnostics	15
4.1	Process image in the PLC	15
4.1.1	Byte 0: Module status	15
4.1.2	Byte 1: Error status (EFLG) of the CAN controller	16
4.1.3	Byte 2: FIFO status bits	16
4.1.4	Byte 3/4: CAN controller Tx/Rx error counter	16
4.2	CANParam debug screen	17

1 Overview

1.1 Application and function description

This manual describes the application example (data handling block) of a CAN 300 PRO as a DeviceNet Slave on a S7-300.

This is for use in conjunction with the manual for the CAN 300 PRO module. It is assumed that the reader is familiar with the content of this manual.

The handling block FB 99 described here provides the following DeviceNet functions:

- Allocate/Release
- Get/Set Attribute
- Polled connection
- Cyclic connection (with and without Ack)

1.1.1 Get Attribute

	C/I/A
Max Instance of Class ID 0x01	1/0/2 = 1
Vendor ID	1/1/1 = 999
Device type	1/1/2 = 12
Product code	1/1/3 = 700
Release	1/1/4 = 1.0
Produced connection size (polled)	5/2/7 = length of produced data (ANY)
Consumed connection size (polled)	5/2/8 = length of consumed data (ANY)
Produced connection size (cyclic)	5/4/7 = length of produced data (ANY)
Consumed connection size (cyclic)	5/4/7 = length of consumed data (ANY)

1.1.2 Set Attribute

C/I/A
5/1/9
5/2/9
5/4/9
2B/1/1

Note:

The set attribute jobs are acknowledged positively and not used any further.

1.1.3 Approval

The handling blocks were tested on an Allen-Bradley (scanner) and on an Omron scanner.

They have also been commissioned in an Adept and in a Kuka robot.

If you operate a device other than the scanners named above, we cannot guarantee proper functioning but will be glad to support you with initial startup.

1.2 PLC configuration

In the application example, an S7-300 CPU315-2DP and a CAN 300 PRO module are used.

🖳 HW Config - [CPU315-2DP (Configuration) DeviceNet_V12]	
🕅 Station Edit Insert PLC View Options Window Help	_ 8 ×
D 🚅 🐎 🖩 🖏 🎒 🗈 💼 🔬 🏜 🚺 🗖 💥 😡	
🚍 (0) UR	Tanta and and and and
	Tuor witwet
2 CPU 315-2 DP PROFIBUS(1): DP-Mastersystem (1)	Profile: Standard
3	THE PROFIBUS DP
4 GAN 300 PRO	ROFIBUS-PA
5	🖶 🚟 PROFINET IO
6	E- SIMATIC 300
	English CP-300
10	
11	🗄 🧰 PROFIBUS
	🖻 🧰 Point-to-Point
· · · · · · · · · · · · · · · · · · ·	🖻 🧰 CP 340
	- H CP 340 RS232C
🗢 🔿 (0) UR	CP 340 BS422/485
Slot Module Urder number Firm M Laddre U add Com	
2 M CPU 315-2 DP 6ES7 315-24610-048 V2 6 2	CP 340 RS422/485
X2 DP 2047"	E - CP 341
3	E EM.300
4 A CAN 300 PRO 6ES7 340-1AH01-0AE0 256271 256271	F Gateway
	🗄 🧰 IM-300
	M7-EXTENSION
	E 💼 PS-300
	E- RACK-300
10	6ES7 340-1AH01-0AE0 ▲ ጚ
	RS232C (ASCII, 3964R, printer); also
	available as SIPLUS module with order

2 Configuring the CAN Module

To use the example program, the supplied CAN project "DeviceNet_Slave.PAR" with the CANParam software (Version 4.1x and higher) must be transferred to the CAN 300 PRO module.

300/400 via USB) 💽

The CAN project sets the CAN 300 PRO module to DeviceNet mode.

The address of the DeviceNet slave and the baud rate can now be set at the DIP switch. The address must be between 0-63. The same address must also be set on the data handling block

on the data handling block.

DeviceNet	2 ⁶	+ 64
slave	2 ⁵	+ 32
address	2 ⁴	+ 16
	2 ³	+ 8
	2 ²	+ 4
	2 ¹	+ 2
	2°	+ 1
Baud rate	2 ²	+ 4
	2 ¹	+ 2
	2°	+ 1

Baud rates:

0	1	2	3	4	5	6	7
10K	50K	100K	125K	250K	500K	800K	1M

3 Programming in the PLC

3.1 Overview

The example contains a data handling block FB 99 that performs the entire DeviceNet protocol processing.

FB 99 must be called in the cycle. Each time the FB is called, frames are fetched from the CAN 300 PRO module, processed and, if applicable, a response sent.

Depending on the length of the PLC cycle and frame frequency on the CAN bus, the FB can process several frames in succession. The maximum number of frames to be processed can be set with the parameter MaxComRequests.

Parameter	Direction	Туре	Example
Init	IN	BOOL	FALSE
EnableFB	IN	BOOL	TRUE
Base	IN	INT	256
MacID	IN	INT	10
ProducedData	IN	ANY	P#A 50.0 BYTE 32
ConsumedData	IN	ANY	P#E 50.0 BYTE 32
Cyclic	IN	BOOL	FALSE
CycAck	IN	BOOL	FALSE
ExpectedPacketRate	IN	TIME	T#1s
MaxComRequests	IN	INT	20
MasterRun	OUT	BOOL	M 50.0
DataExchange	OUT	BOOL	M 50.1
Allocate	OUT	BOOL	M 50.2
SendBusy	OUT	BOOL	M 50.3
Done	OUT	BOOL	M 50.4
RcvBusy	OUT	BOOL	M 50.5
NewData	OUT	BOOL	M 50.6
Error	OUT	BOOL	M 50.7
RetVal	OUT	INT	MW 52

3.2 FB 99 "DN Adapter"

Init	Call with TRUE during startup (OB 100) to perform basic initialization; always call with FALSE during the cycle
EnableFB	Enable flag for activating the block
Base	Address of the CAN 300 PRO module
MacID	DeviceNet address of slave, must always correspond to the DIP switch setting.
ProducedData	Any pointer to the receive data
ConsumedData	Any pointer to the transmit data
Cyclic	FALSE: Polled operation / TRUE: Cyclic operation
CycAck	Cyclic connection acknowledged
ExpectedPacketR	ate for cyclic operation and Timeout monitoring
MaxComRequest	Number of processed CAN frames for each FB 99 call

MasterRun	Master is running and transmitting data
DataExchange	Communication active
Allocate	Connection established (for one cycle only)
SendBusy	Transmit active
Done	Transmit completed
RcvBusy	Receive active
NewData	Receive completed
Error	One error has occurred (pending for one cycle only)
RetVal	Error number, see Section 3.5

<u>Note:</u>

Data handling block FB 99 calls FCs 65, 66, 67 unconditionally. The FC numbers can therefore only be modified if FB 99 is adapted.

3.3 Example OB 100

In start-up OB 100, FB 99 must be called once with parameter Init = TRUE to perform basic initialization.

Example of call:

CALL FB 99, I	DB99	
Init	:=TRUE	
EnableFB	:=TRUE	
Base	:=256	
MacID	:=10	
ProducedData	:=	
ConsumedData	:=	
Cyclic	:=	
CycAck	:=	
ExpectedPacketRat	ce:=	
MaxComRequests	:=	
MasterRun	:=	
DataExchange	:=	
Allocate	:=	
SendBusy	:=	
Done	:=	
RcvBusy	:=	
NewData	:=	
Error	:=	
RetVal	:=	

3.4 Example OB 1

Example of call:

	CATT	Π	00 5	0.04
	CALL	гв	99, L	
				·=FALSE
	EnableFB			·=IRUE
	Base			:=256
	MaclD			:=I0
	Prod	ucedDa	ta	:=P#1 50.0 BYTE 32
	Cons	umedDa [.]	ta	:=P#Q 50.0 BYTE 32
	Cycl	ic		:=FALSE
	СусА	ck	_	:=FALSE
	Expe	ctedPa	cketRat	e:=T#1S
	MaxC	omRequ	ests	:=20
	Mast	erRun		:=M50.0
	Data	Exchan	ge	:=M50.1
	Allo	cate		:=M50.2
	Send	Busy		:=M50.3
	Done			:=M50.4
	RcvB	usy		:=M50.5
	NewData			:=M50.6
	Erro	r		:=M50.7
	RetV	al		:=MW52
//save	e allo	cate		
, ,	Δ	M	50.2	
	S	M	51 2	
//save	- erro	r	0111	
77 Save CIIOI			50 7	
	S	M	51 7	
//save	e retv	al	51.7	
	L	MW	52	
	L	0		
	==I			
	JC	M000		
	L	MW	52	
	Т	MW	54	
M000:	NOP	0		
	-			

3.5 Return parameter RETVAL

The return parameter RETVAL of the function block can contain both function-specific errors or error numbers of the Siemens system function blocks SFC 58, SFC 59, and SFC 20.

Error codes of DeviceNet handling:

- 80D1: Receive frame with length > 8
- 80D5: Scanner attempts to read non-implemented attribute
- 80D6: Scanner attempts to write non-implemented attribute
- 80DA: Timeout (3*ExpectedPacketRate), scanner does not respond (poll)

4 Diagnostics

4.1 **Process image in the PLC**

The CAN 300 PRO module occupies 16 bytes in the input and output process image. The content of the output process image is not used.

The content of the input process image can be used for information purposes by the user in the application.

Byte	Meaning
0	Module status generally, CAN group error display
1	CAN controller status (register of the CAN controller)
2	FIFO status bits (send & receive)
3	CAN controller: TX error counter
4	CAN controller: RX error counter
5	CANopen: Masterstatus
6	CANopen: Assignment of the SDO request mailboxes
7	CANopen: Number of nodes in operational
8	Node ID on use of the bit filter or of the master
9	reserved
10	reserved
1115	used internally

The input image can only be accessed with the I/O direct access commands: L PIB, L PIW

4.1.1 Byte 0: Module status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CAN	Module is						Module
controller	CAN 300						parameterized
group error	PRO						and running

Bit 0: The CAN 300 PRO module has processed the configuration and is ready for operation.

Bit 6: This bit is always 1 in order to detect the CAN 300 PRO.

Bit 7: Group error bit for errors on the CAN controller, more precise information about the cause of error can be found in byte 1.

4.1.2 Byte 1: Error status (EFLG) of the CAN controller

	RX10VR	RX00VR	TXBO	TXEP	RXEP	TXWAR	RXWAR	EWARN
	bit 7							bit 0
bit 7	RX10VR:	Receive Buf	fer 1 Overflo	ow Flag				
	- Set when	a valid mes	sage is rece	eived for RX	B1 and CAN	IINTF.RX1IF	= 1	
bit 6		Pocoivo Buf	J for 0 Ovorfla	w Flag				
DILO	- Set when	a valid mes	sade is rece	eived for RX	B0 and CAN	IINTE RX0IE	= 1	
	- Must be r	eset by MCI	J		bo and or a			
bit 5	TXBO: Bus	s-Off Error F	lag					
	- Bit set wh	nen TEC rea	ches 255					
	- Reset aft	er a success	sful bus reco	very sequer	nce			
bit 4	TXEP: Tra	nsmit Error-l	Passive Flag	9				
	- Set when	TEC is equ	al to or grea	ter than 128	}			
L:1 0	- Reset wh	en TEC IS le	ess than 128					
DIT 3	RXEP: Red	Ceive Error-F	assive Flag					
	- Set when - Reset wh	en REC is equ	al to or grea	iter than 128 }	3			
bit 2	TXWAR: T	ransmit Erro	r Warning F	lag				
	- Set when	TEC is equ	al to or grea	ter than 96				
	- Reset wh	en TEC is le	ess than 96					
bit 1	RXWAR: F	Receive Erro	r Warning F	lag				
	- Set when	REC is equ	al to or grea	iter than 96				
	- Reset wh	en REC is le	ess than 96					
bit 0	EWARN: E	rror Warning	g ⊢lag					
	- Set when	IEC or RE	C is equal to	or greater f	than 96 (TX)	WAR or RXV	VAR = 1)	
	- iveset wit			110 1005 tildi	130			

4.1.3 Byte 2: FIFO status bits

Bit 7	Bit 6	Bit 5	Bit 4
Send-FIFO (high)	Send-FIFO	Send-FIFO (low)	Send-FIFOs
half full	(high or low)	half full	(high & low)
	overflow		completely empty
Bit 3	Bit 2	Bit 1	Bit 0
Receive-FIFO	Receive-FIFO	Receive-FIFO (low)	Receive-FIFOs
(high) half full	(high or low)	half full	(high & low)
	overflow		completely empty

4.1.4 Byte 3/4: CAN controller Tx/Rx error counter

The error counter is incremented on every CAN frame transmitted or received with an error. If a CAN frame has been correctly transmitted, the error counter is decremented again. If the counter is greater than 96, the CAN controller goes into "warning" mode. If the error counter exceeds 127, the CAN controller goes into "error passive."

Layer2 CANopen Version V1.21 Buffers CAN Rx CAN Rx 0 Protocol 11Bit mode Baudrate 1.00M Sync used Masks on Controllerstates FIFO status Error Register 0K00 Node status 0K Rx errors 0x00 Tx errors 0x00 Restat 0		-					_
Layer2 CANopen Version V1.21 Buffers highpiror lowprior CAN Rx 0 24888 CAN Tx 45394 0 Plc Rx 0 0 Protocol 11Bit mode PLC Tx 19612 2 Baudrate 1,00M Script 0 0 Sync used Masks on Reset 1 Controllerstates 0x00 Reset 1 Rx errors 0x00 1 1 1 Rx errors 0x00 1 1 1 Restart 0x00 1 1 1 Word status 0x00 1 1 1 Restart 0x00 1 1 1 Word status 0x00 1 1 1 Restart 0x00 1 1 1 Word status 0x00 1 1 1 Word status 0x00 1 1 1 Word status 0x00 1 <td< td=""><td>target is CAN300 PR</td><td>10</td><td></td><td></td><td></td><td></td><td>×</td></td<>	target is CAN300 PR	10					×
Version V1.21 Buffers highprior lowprior CAN Rx 0 24888 CAN Tx 45394 0 CAN Tx 45394 0 0 PLC Rx 0 0 Protocol 11Bit mode Baudrate 1,00M 0 0 0 Sudrate 1,00M Image: Controllerstates Controllerstates 0 0 0 Fror-Register 0x00 FIFO status Send Receive empty Image: Controllerstates Image: Controllerstates Controllerstates Controllerstates Image: Controllerstates Send Receive empty Image: Controllerstates Image: Controllerstates Image: Controllerstates Send Receive empty Image: Controllerstates Image: Co	Layer2 CANopen						
Controllerstates 0x00 Error-Register 0x00 Node status 0K Rx errors 0x00 Tx errors 0x00 Restart 0x00 Disconnect Close	Version Controllersettings Protocol Baudrate Sync used	V1.21 11Bit mode 1,00M V Masks on	Buffers CAN Rx CAN Tx PLC Rx PLC Tx Script Timer	highprior 0 45394 0 19612 0 0 Reset	lowprior 24888 0 2 2 0 0		
	Controllerstates Error-Register Node status Rx errors Tx errors	0x00 0K 0x00 0x00 Restart	FIFO status empty Low half full High half full overflow Di	Send		Close	

4.2 CANParam debug screen

The "Connect" button activates monitoring mode. If you press the button again, the link will be disconnected again.

The debug dialog box provides the following information:

Version	Version number of the operating system						
Protocol	Configured CAN protocol (11bit/29bit)						
Baud rate	Active CAN baud rate						
Controller stat	us Content of the CAN status register:						
Error register	Content of the CAN error register EFLG:						
Node status	Content of the CAN status register (see above): "OK," "Warning," "Passive," "Bus Off"						

Rx error counter Error counter CAN reception

Tx error counter Error counter CAN transmission

Note: The transmit and receive error counters are incremented by the can controller if transmission or receipt of a frame has failed. As soon as a frame has been correctly sent or received, the corresponding counter is decremented again. These counters should always be 0 if the CAN bus is functioning correctly!

Node status should always be "OK" to ensure fault-free CAN data transmission.

!

The error counters must be "0"; otherwise data transmission on the CAN bus is faulty.

The information about the buffers and FIFOs are only relevant in layer 2. In CANopen Master mode, the firmware performs control of the buffers. Buffer

Display of the number of received and transmitted CAN frames in the buffers on the CAN bus, to the PLC and internally

Note: The CAN 300 PRO module has receive and transmit buffers of 400 frames (low priority) and 20 frames (high priority). The counters show how many frames have been processed.

There should never be a big difference between the Rx and Tx counter pairs. However, if this does occur, the CAN frames are not being fetched from the PLC fast enough or are being transmitted to the PLC too fast.

If, in the case of a full FIFO, further frames are received or transmitted, the error bit FIFO overflow is set and the oldest frame is deleted from the FIFO.

FIFO status Display of the filling level of the FIFOs

In the PLC, the FIFO status can be evaluated via the peripheral byte 2. aThe FIFOs can be deleted with data handling block FC 67 CANCTRL.